Synthesis of Dibenz[a,h]anthracenes by Pd-Catalyzed Intramolecular Double-cyclization of (Z,Z)-p-Styrylstilbenes

Rui Umeda, Satoshi Miyake, and Yutaka Nishiyama* Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680

(Received December 10, 2011; CL-111183; E-mail: nishiya@kansai-u.ac.jp)

Dibenz[a,h]anthracene (1a) and its dimethoxy derivatives 1b and 1c were synthesized by the Pd-catalyzed intramolecular double-cyclization of the corresponding (Z,Z)-p-styrylstilbene derivatives 2–5, which were readily prepared by the Wittig reaction. The optical properties of the dibenz[a,h]anthracenes 1a–1c are also presented.

Fused polycyclic aromatic compounds have been attracting a great deal of interest in view of the application of organic materials for electronic devices such as organic field effect transistors (OFETs) and light-emitting diodes (OLEDs).¹ Among them, linearly fused systems, such as pentacene (Chart 1) and its derivatives, have been intensively studied for their application to organic materials for electronic devices.² Picene, which is an isostructural analogue of pentacene, contains a condensed zigzag form with five benzene rings. An FET with a thin film of picene shows a high μ value more than $1 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ and the FET properties are clearly improved, not only the μ value but also the on-off ratio under air/O2 conditions.^{3a} Furthermore, alkalimetal, potassium or rubidium, doped picene exhibits superconductivity below 18 K.3b Compared to pentacene and picene, little is known for the application of dibenz[a,h]anthracene (1a), which has angularly fused systems consisting five benzene rings, to organic materials.^{4,5} Moreover, examples of the synthetic methods of dibenz[a,h]anthracene and its derivatives are still rare; (i) cyclization of naphthyl lactone derivative followed by sequential transformation,⁶ (ii) photoinduced cyclization of substituted 1,4-distyrylbenzenes,7 (iii) ring-closing olefin metathesis of 2,2',5',2"-tetravinyl-[1,1';4',1']terphenyl by Schrock and Grubbs catalysts,8 (iv) ruthenium-catalyzed cyclization of diethynylterphenyl,⁹ (v) tandem radical cyclization of (Z,Z)-1,4bis(2-iodostyryl)benzene derivatives,¹⁰ and (vi) ruthenium-catalyzed C-H arylation of aromatic ketones.⁵ In addition, there are several drawbacks for these methods, such as lengthy sequences for their preparation, using expensive and unstable transition metals, and limitation of the substrates.

Chart 1.

Pd-Catalyzed C–H arylation is a powerful method for the construction of polycyclic aromatic carbons.¹¹ Indeed, various types of polycyclic aromatic carbons, including highly conjugated polyarenes, polycyclic heteroarenes, and helicenes, have been prepared by Pd-catalyzed intramolecular C–H arylation.¹² However, there is no example of the application of Pd-catalyzed

Scheme 1. Synthesis of *p*-styrylstilbenes 2–5.

C-H arylation in the synthesis of dibenz[a,h]anthracenes. We now report the synthesis of dibenz[a,h]anthracenes 1 by the Pd-catalyzed intramolecular double-cyclization of the corresponding (Z,Z)-p-styrylstilbene derivatives 2–5 and investigation of the optical properties of 1.

The synthesis of *p*-styrylstilbenes 2-5 as precursors of dibenz[a,h]anthracenes **1** is shown in Scheme 1.¹³ The reaction of o-bromobenzyltriphenylphosphonium bromide and terephthalaldehyde followed by the purification by silica gel chromatography and recrystallization from CHCl₃ gave the dibromostyrylstilbene (Z,Z)-2. Likewise, (Z,Z)-3 was synthesized from benzyltriphenylphosphonium bromide and 2,5-dibromoterephthalaldehvde. 1,4-Bis(bromomethyl)-2,5-dimethoxybenzene, which was prepared by the reaction of 1,4-dimethoxybenzene, HBr ag., and paraformaldehyde, was allowed to react with triphenylphosphine to give the corresponding phosphonium compound. The Wittig reaction of the above phosphonium compound with o-bromobenzaldehyde afforded (Z,Z)-4 after reprecipitation from a mixed solvent of CHCl₃ and hexane. The Wittig reaction of *p*-methoxybenzyltriphenylphosphonium chlo-

cat.Pd(OAc)₂ (0.01 mmol) additive (0.12 mmol) K₂CO₃ (0.60 mmol) DMF (6 mL) (Z,Z)-2(0.06 mmol) Time Temp Recovery Yield of Entry Additive of $2/\%^{a}$ $1a/\%^{a}$ /h /°C LiBr, TBAB 12 80 56 1 2 LiBr. TBAB 110 6 41 3 LiI, TBAB 6 110 12 34 4 12 110 2 81 (79) 5^b 12 110 75

Table 1. Pd-Catalyzed intramolecular cyclization of (Z,Z)-*p*-styrylstilbene 2

^aDetermined by ¹H NMR with internal standard. The number in parenthesis shows the isolated yield. ^b(*E*,*E*)-Isomer **2** was used.

Scheme 2. Synthesis of dibenz[a,h]anthracene (1a) by Pdcatalyzed intramolecular cyclization.

ride and 2,5-dibromoterephthalaldehyde gave the isomeric mixture of styrylstilbene **5** in the ratio of (Z,Z):(E,Z):(E,E) = 49:15:36. Repeated recrystallization from toluene gave a 92:8 mixture of (Z,Z)- and (E,E)-**5** in 42% combined yield.

First, the reaction of (Z,Z)-2 (0.06 mmol) in the presence of a catalytic amount of Pd(OAc)₂ (0.01 mmol), K₂CO₃ (0.60 mmol), LiBr (0.12 mmol), and tetrabutylammonium bromide (TBAB) (0.12 mmol) at 110 °C gave **1a** in moderate yield (Entry 2 in Table 1). At a lower reaction temperature (80 °C), the reaction did not proceed and the isomeric mixtures of **2** were recovered together with uncharacterized polymeric materials (Entry 1). With the addition of LiI instead of LiBr, the yield of **1a** slightly decreased (Entry 3). It is interesting to note that the reaction smoothly proceeded without additives, TBAB and LiBr, to give dibenz[*a*,*h*]anthracene (**1a**) in high yield (Entry 4). When the reaction using (*E*,*E*)-**2** instead of (*Z*,*Z*)-**2** was carried out under the same conditions as Entry 4, the cyclization did not proceed and the isomeric mixtures of **2** were recovered (Entry 5). In all cases, the formation of [5]helicene was not observed.¹⁴

Next, the Pd-catalyzed intramolecular cyclization of (Z,Z)-3 was examined under the optimized conditions as Entry 4 in Table 1 (Scheme 2). Dibenz[*a*,*h*]anthracene (**1a**) was formed in good yield (84%). The treatment of (Z,Z)-4 and (Z,Z)-5, which contained a small amount of (E,E)-5, under the same conditions gave 7,14-dimethoxydibenz[*a*,*h*]anthracene (**1b**)¹⁵ and 2,9-dimethoxydibenz[*a*,*h*]anthracene (**1c**),¹⁶ respectively (Scheme 3).

The UV-vis and FL spectroscopy of dibenz[a,h]anthracenes **1a-1c** were measured in CH₂Cl₂ (Figure 1) and the results of the photophysical properties of **1a-1c** are shown in Table 2. The UV-vis spectrum of **1a** shows the characteristic absorption bands, such as the α -, β -, and para-bands, of aromatic

Scheme 3. Synthesis of 7,14- and 2,9-dimethoxydibenz[a,h]- anthracenes (**1b** and **1c**) by Pd-catalyzed intramolecular cyclization.

Figure 1. UV–vis absorption (top) and fluorescence (bottom) spectra of dibenz[a,h]anthracenes **1a–1c** in CH₂Cl₂.

Table 2. Optical properties of dibenz[a,h]anthracenes **1a–1c** in CH₂Cl₂^a

	Absorption λ_{abs}/nm Fluores		ice
	$(\varepsilon/M^{-1} \mathrm{cm}^{-1})$	$\lambda_{\rm em}/{\rm nm}$	$arPhi^{\mathrm{b}}$
1a	288 (46100), 298 (65200),	398, 420, 446	0.035
	321 (10300), 334 (8500),		
	350 (7100), 373 (500), 395 (500)		
1b	293 (81000), 303 (91100),	413, 435, 464	0.118
	336 (13300), 351 (17300),		
	369 (16700), 404 (4700)		
1c	305 (96500), 329 (17600),	411, 435, 463	0.083
	343 (17200), 360 (19500),		
	384 (2900), 406 (2900)		

^a1a ($c = 3.59 \times 10^{-5}$ M), 1b ($c = 2.96 \times 10^{-5}$ M), 1c ($c = 2.96 \times 10^{-5}$ M). ^bAbsolute quantum yield measured using an integrating sphere.

hydrocarbons (see also Figure S1 in SI^{20}).¹⁷ The absorption maxima of **1a** is bathochromically shifted by about 15 nm in comparison to picene.¹⁸ The FL spectrum of **1a** exhibits a significant vibrational fine structure due to its rigid planarity. In the case of **1b** and **1c**, their absorption maxima are slightly red-shifted and the fluorescence quantum yields of them increased compared to that of **1a**.

In conclusion, we succeeded in the synthesis of dibenz-[a,h]anthracene (1a) and the 7,14- and 2,9-dimethoxydibenz-[a,h]anthracenes (1b and 1c) by the Pd-catalyzed intramolecular double-cyclization of (Z,Z)-p-styrylstilbene derivatives 2–5.¹⁹ The optical spectra of dibenz[a,h]anthracenes 1a–1c exhibited typical features of polycyclic aromatic hydrocarbons and were significantly influenced by the positions of the substituted methoxy groups.

This research was supported by a Grant-in-Aid for Science Research, and Strategic Project to Support the Formation of Research Bases at Private Universities from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and Notes

- a) Special issue on Organic Electronics and Optoelectronics: S. R. Forrest, M. E. Thompson, *Chem. Rev.* 2007, *107*, 923.
 b) J. Wu, W. Pisula, K. Müllen, *Chem. Rev.* 2007, *107*, 718.
 c) M. D. Watson, A. Fechtenkötter, K. Müllen, *Chem. Rev.* 2001, *101*, 1267.
 d) R. G. Harvey, *Polycyclic Aromatic Hydrocarbons*, Wiley-VCH, New York, 1996.
- 2 a) D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, *IEEE Electron Device Lett.* 1997, *18*, 87. b)
 T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, T. D. Jones, *Mater. Res. Soc. Symp. Proc.* 2003, *771*, 169. c) R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, G. G. Malliaras, *Chem. Mater.* 2004, *16*, 4497. d)
 H. E. Katz, *Chem. Mater.* 2004, *16*, 4748. e) J. E. Anthony, *Chem. Rev.* 2006, *106*, 5028. f) J. E. Anthony, *Angew. Chem., Int. Ed.* 2008, *47*, 452.
- 3 a) H. Okamoto, N. Kawasaki, Y. Kaji, Y. Kubozono, A. Fujiwara, M. Yamaji, *J. Am. Chem. Soc.* 2008, *130*, 10470.
 b) R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y. Maniwa, Y. Kubozono, *Nature* 2010, *464*, 76.
- 4 For examples, see: a) S. Xie, M.-X. Hu, Z. D. Popovic, A.-M. Hor, B. S. Ong, U. S. Patent, US5989737A, 1999. b)
 M. Amano, Jpn. Patent, JP2007157899A, 2007. c) M. Amano, Jpn. Patent, JP2007227717A, 2007. d) H. Ikeda, M. Matsuura, H. Kawamura, U. S. Patent, US7429425B2, 2008.
 e) M. Saito, Y. Nakano, H. Nakamura, H. Kondo, PCT Int. Appl. WO 2010/024180 A1, 2010.
- 5 K. Kitazawa, T. Kochi, M. Nitani, Y. Ie, Y. Aso, F. Kakiuchi, *Chem. Lett.* **2011**, *40*, 300.
- 6 a) R. G. Harvey, C. Cortez, S. A. Jacobs, J. Org. Chem. 1982, 47, 2120. b) J. W. Cook, J. Chem. Soc. 1931, 3273.
- 7 a) K. L. Platt, F. Setiabudi, J. Chem. Soc., Perkin Trans. 1 1992, 2005. b) J. Blum, M. Zimmerman, Tetrahedron 1972, 28, 275.

- 8 M. C. Bonifacio, C. R. Robertson, J.-Y. Jung, B. T. King, J. Org. Chem. 2005, 70, 8522.
- 9 a) H.-C. Shen, J.-M. Tang, H.-K. Chang, C.-W. Yang, R.-S. Liu, J. Org. Chem. 2005, 70, 10113. b) T.-A. Chen, T.-J. Lee, M.-Y. Lin, S. M. A. Sohel, E. W.-G. Diau, S.-F. Lush, R.-S. Liu, Chem.—Eur. J. 2010, 16, 1826. c) B. S. Shaibu, S.-H. Lin, C.-Y. Lin, K.-T. Wong, R.-S. Liu, J. Org. Chem. 2011, 76, 1054.
- 10 D. C. Harrowven, M. I. T. Nunn, D. R. Fenwick, *Tetrahedron Lett.* 2002, 43, 7345.
- For reviews, see: a) A. M. Echavarren, B. Gómez-Lor, J. J. González, Ó. de Frutos, *Synlett* 2003, 585. b) D. Alberico, M. E. Scott, M. Lautens, *Chem. Rev.* 2007, 107, 174.
- 12 For selected examples, see: a) A. de Meijere, Z. Z. Song, A. Lansky, S. Hyuda, K. Rauch, M. Noltemeyer, B. König, B. Knieriem, Eur. J. Org. Chem. 1998, 2289. b) Ó. de Frutos, B. Gómez-Lor, T. Granier, M. Á. Monge, E. Gutiérrez-Puebla, A. M. Echavarren, Angew. Chem., Int. Ed. 1999, 38, 204. c) R. B. Bedford, C. S. J. Cazin, Chem. Commun. 2002, 2310. d) S. Hernández, R. SanMartin, I. Tellitu, E. Domínguez, Org. Lett. 2003, 5, 1095. e) B. Gómez-Lor, A. M. Echavarren, Org. Lett. 2004, 6, 2993. f) D. García-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 1066. g) K. Kamikawa, I. Takemoto, S. Takemoto, H. Matsuzaka, J. Org. Chem. 2007, 72, 7406. h) P. Franck, S. Hostyn, B. Dajka-Halász, Á. Polonka-Bálint, K. Monsieurs, P. Mátyus, B. U. W. Maes, Tetrahedron 2008, 64, 6030. i) A. K. Yadav, H. Ila, H. Junjappa, Eur. J. Org. Chem. 2010, 338.
- 13 The Wittig reactions were carried out according to the literature procedures; for an example see: E. C. Dunne, É. J. Coyne, P. B. Crowley, D. G. Gilheany, *Tetrahedron Lett.* 2002, 43, 2449.
- 14 The Pd-catalyzed double C–H arylation reaction of the (*Z*,*Z*)dimethoxy-*p*-styrylstilbene derivatives gave dimethoxy[5]helicenes in moderate to good yields; see, ref. 12g.
- 15 a) J. A. LaBudde, C. Heidelberger, J. Am. Chem. Soc. 1958, 80, 1225. b) E. Boyland, P. Sims, Biochem. J. 1965, 97, 7.
- 16 E. Boyland, A. A. Levi, E. H. Mawson, E. Roe, *Biochem. J.* 1941, 35, 184.
- 17 a) E. Clar, J. Chem. Phys. 1949, 17, 741. b) E. Clar, Chem. Ber. 1949, 82, 495. c) E. Clar, Spectrochim. Acta 1950, 4, 116. d) R. Rieger, K. Müllen, J. Phys. Org. Chem. 2010, 23, 315.
- 18 Absorption spectrum of picene in CHCl₃ has been reported; at 376 (log ε 2.98), 364 (log ε 2.60), 356 (log ε 3.95), 329 (log ε 4.36), 314 (log ε 4.28), 303 (log ε 4.56), 287 (log ε 5.04), 275 (log ε 4.86), 258 nm (log ε 4.70), see: E. Clar, D. G. Stewart, *J. Am. Chem. Soc.* 1952, 74, 6235.
- 19 Unfortunately, 7,14-diaryl-substituted dibenz[a,h]anthracenes were not obtained by the Pd-catalyzed intramolecular cyclization of the corresponding (Z,Z)-p-styrylstilbene derivatives under the same reaction conditions as Entry 4 in Table 1.
- 20 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/ index.html.